[latexpage]
1
Example 1
Simplify the following Boolean Algebra:
$(A.\overline{A} )+B$
- Complement Rule
- Identity Rule
$(A.\overline{A} )+B$
$(0)+B$#Complement
$B$ #Identity
2
Example 2
$(A.B)+(\overline{A}.B)$
Absorption
$(A.B)+(\overline{A}.B)$ #Absorption
B
3
Example 3
$(A+B).(A+C)$
4
Example 4
$(\overline{A} + B).(A+B)$
5
Example 5
$A\overline{C} + ABC$
6
Example 6
$A.\overline{B}.D + A.\overline{B}.\overline{D}$
7
Example 7
$B + B.C + A.C + A.B + A.C.B$
8
Example 8
$\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D+\overline{A}.\overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D} $
9
Example 9
$\overline{(\overline{A}.(B+C))}$
- Use De Morgan’s Law
- Use Involution Law(Double Inversion)
$\overline{(\overline{A}.(B+C))}$ #Original Expression
$(\overline{\overline{A}} + \overline{(B + C))}$ #Use De Morgan’s law on the ANDed components
$(A + \overline{(B + C))}$ Involution Law (Double negatives cancel)
$(A + (\overline{B}.\overline{C}))$ De Morgan’s Law again
$\bf{A + \overline{B}.\overline{C}}$ # BODMAS rules allow removal of brackets
10
Example 10
11
Example 11
[latexpage]